Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku
Sunday, June 7, 2020
Edit
Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku - Hallo sahabat Rahasia Rumus Pendidikan, Pada Artikel yang anda baca kali ini dengan judul Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku, kami telah mempersiapkan artikel ini dengan baik untuk anda baca dan ambil informasi didalamnya. mudah-mudahan isi postingan
Artikel Matematika, yang kami tulis ini dapat anda pahami. baiklah, selamat membaca.
Judul : Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku
link : Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku
Teorema Pythagoras atau yang sering disebut Dalil Pythagoras yaitu sebuah teorema yang mengatakan korelasi antarsisi pada segitiga siku-siku.
Menurut Teorema Pythagoras ,kuadrat sisi miring segitiga siku-siku merupakan jumlah kuadrat kedua sisi lainnya.
Secara matematis ditulis.
Sebenarnya rumus Pythagoras sudah ada pada Matematika SD. Rumus Phytagoras ini sering di dipakai dalam penghitungan geometri , yaitu dikala diminta untuk menghitung keliling bangkit segitiga siku siku yang belum diketahui panjang sisi miringnya. Namun alasannya sangat jarang bahkan hampir tidak ada soal yang secara eksklusif menanyakan atau memerintahkan untuk memilih panjang sisi miring pada sebuah segitiga siku siku, mungkin inilah yang menimbulkan kita melupakan bahan tersebut.
Teorema Phytagoras ini sangat terkenal dalam bidang geometri. dan terus dipakai pada tingkatan berikutnya. Misalnya pada bahan dimensi tiga yang dipelajari pada jenjang SMA, begitu pula pada bahan trigonometri.
Rumus untuk mencari panjang sisi miring segitiga siku-siku dengan memakai rumus Pythagoras yaitu sebagai berikut :
Kuadrat sisi AC = kuadrat sisi AB + kuadrat sisi BC. atau AC² = AB² + BC²
Rumus untuk mencari panjang sisi bantalan yaitu:
b² = c² - a²
Rumus untuk mencari sisi samping/tinggi segitiga yaitu:
a² = c² - b²
Rumus untuk mencari sisi miring segitiga siku-siku yaitu:
c² = a² + b²
Contoh soal
1. Berapakah panjang sisi c (sisi miring) ?
Diketahui : AB = 6cm BC = 8 cm
Ditanya : AC ?
Jawab :
a² + b² = c²
6² + 8² = c²
36 + 64 = c²
100 = c²
c = √100
c = 10
2. Berapakah panjang sisi b ?
Jawab :
b² = c² - a²
= 10² - 6²
= 100 - 36
b =√64
b = 8
3. Berapakah panjang sisi a ?
Jawab :
a² = c² - b²
=10² - 8²
= 100 - 64
a = √36
a = 6
Rumus Pythagoras juga dipakai untuk mencari keliling trapesium dan keliling segitiga yang belum diketahui alas/ tinggi/ sisi miringnya. Agar lebih gampang dikala mengerjakan Soal bangkit datar trapesium dan Soal bangkit datar segitiga berikut ini yaitu pola angka dalam Teorema Pythagoras.
a – b – c
3 – 4 – 5
5 – 12 – 13
6 – 8 – 10
7 – 24 – 25
8 – 15 – 17
9 – 12 – 15
10 – 24 – 26
12 – 16 – 20
14 – 48 – 50
15 – 20 – 25
15 – 36 – 39
16 – 30 – 34
Keterangan
a = tinggi segitiga
b = bantalan segitiga
c = sisi miring
Berikut ini yaitu 25 referensi soal penerapan Rumus Pythagoras ↓
Soal Teorema Pythagoras Sekolah Menengah Pertama plus Kunci Jawaban dan Pembahasan
Demikianlah bahan Rumus Pythagoras untuk Mencari Sisi Miring Segitiga Siku-siku. Semoga Bermanfaat.
Anda sekarang membaca artikel Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku dengan alamat link https://rahasiarumuspendidikan.blogspot.com/2020/06/rumus-pythagoras-untuk-mencari-sisi.html
Judul : Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku
link : Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku
Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku
Rumus Pythagoras yaitu rumus yang dipakai untuk mencari panjang sisi pada sebuah segitiga siku-siku. Penemu rumus ini yaitu spesialis matematika dari Yunani yang berjulukan Pythagoras.Teorema Pythagoras atau yang sering disebut Dalil Pythagoras yaitu sebuah teorema yang mengatakan korelasi antarsisi pada segitiga siku-siku.
Menurut Teorema Pythagoras ,kuadrat sisi miring segitiga siku-siku merupakan jumlah kuadrat kedua sisi lainnya.
Secara matematis ditulis.
Sebenarnya rumus Pythagoras sudah ada pada Matematika SD. Rumus Phytagoras ini sering di dipakai dalam penghitungan geometri , yaitu dikala diminta untuk menghitung keliling bangkit segitiga siku siku yang belum diketahui panjang sisi miringnya. Namun alasannya sangat jarang bahkan hampir tidak ada soal yang secara eksklusif menanyakan atau memerintahkan untuk memilih panjang sisi miring pada sebuah segitiga siku siku, mungkin inilah yang menimbulkan kita melupakan bahan tersebut.
Teorema Phytagoras ini sangat terkenal dalam bidang geometri. dan terus dipakai pada tingkatan berikutnya. Misalnya pada bahan dimensi tiga yang dipelajari pada jenjang SMA, begitu pula pada bahan trigonometri.
Rumus untuk mencari panjang sisi miring segitiga siku-siku dengan memakai rumus Pythagoras yaitu sebagai berikut :
Kuadrat sisi AC = kuadrat sisi AB + kuadrat sisi BC. atau AC² = AB² + BC²
Rumus untuk mencari panjang sisi bantalan yaitu:
b² = c² - a²
Rumus untuk mencari sisi samping/tinggi segitiga yaitu:
a² = c² - b²
Rumus untuk mencari sisi miring segitiga siku-siku yaitu:
c² = a² + b²
Contoh soal
1. Berapakah panjang sisi c (sisi miring) ?
Diketahui : AB = 6cm BC = 8 cm
Ditanya : AC ?
Jawab :
a² + b² = c²
6² + 8² = c²
36 + 64 = c²
100 = c²
c = √100
c = 10
2. Berapakah panjang sisi b ?
Jawab :
b² = c² - a²
= 10² - 6²
= 100 - 36
b =√64
b = 8
3. Berapakah panjang sisi a ?
Jawab :
a² = c² - b²
=10² - 8²
= 100 - 64
a = √36
a = 6
Rumus Pythagoras juga dipakai untuk mencari keliling trapesium dan keliling segitiga yang belum diketahui alas/ tinggi/ sisi miringnya. Agar lebih gampang dikala mengerjakan Soal bangkit datar trapesium dan Soal bangkit datar segitiga berikut ini yaitu pola angka dalam Teorema Pythagoras.
a – b – c
3 – 4 – 5
5 – 12 – 13
6 – 8 – 10
7 – 24 – 25
8 – 15 – 17
9 – 12 – 15
10 – 24 – 26
12 – 16 – 20
14 – 48 – 50
15 – 20 – 25
15 – 36 – 39
16 – 30 – 34
Keterangan
a = tinggi segitiga
b = bantalan segitiga
c = sisi miring
Berikut ini yaitu 25 referensi soal penerapan Rumus Pythagoras ↓
Soal Teorema Pythagoras Sekolah Menengah Pertama plus Kunci Jawaban dan Pembahasan
Demikianlah Artikel Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku
Sekianlah artikel Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku kali ini, mudah-mudahan bisa memberi manfaat untuk anda semua. baiklah, sampai jumpa di postingan artikel lainnya.
Anda sekarang membaca artikel Rumus Pythagoras Untuk Mencari Sisi Miring Segitiga Siku-Siku dengan alamat link https://rahasiarumuspendidikan.blogspot.com/2020/06/rumus-pythagoras-untuk-mencari-sisi.html